Source code for ignite.metrics.loss
from __future__ import division
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric
[docs]class Loss(Metric):
"""
Calculates the average loss according to the passed loss_fn.
- `loss_fn` must return the average loss over all observations in the batch.
- `update` must receive output of the form `(y_pred, y)`.
"""
def __init__(self, loss_fn, output_transform=lambda x: x):
super(Loss, self).__init__(output_transform)
self._loss_fn = loss_fn
def reset(self):
self._sum = 0
self._num_examples = 0
def update(self, output):
y_pred, y = output
average_loss = self._loss_fn(y_pred, y)
assert len(average_loss.shape) == 0, '`loss_fn` did not return the average loss'
self._sum += average_loss.item() * y.shape[0]
self._num_examples += y.shape[0]
def compute(self):
if self._num_examples == 0:
raise NotComputableError(
'Loss must have at least one example before it can be computed')
return self._sum / self._num_examples